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Abstract. An efficient valence-bond technique is introduced for the numerical study of 
singlet states of spin-1 antiferromagnetic chains and is applied to the general bilinear- 
biquadratic Hamiltonian. The results support the hypothesis that the gap first vanishes, with 
increasing biquadratic exchange, at the Bethe ansatz integrable point, which separates 
regular and dimerised regimes. We distinguish between real gaps and the mixing of degener- 
ate ground states due to quantum tunnelling in small systems. 

I. lntrodrrsthon 

Quantum spin chains have been a subject of theoretical fascination, and experimental 
application, for almost 60 years. A large variety of theoretical techniques have been 
applied, including exact solutions by the Bethe ansatz, exact numerical diagonalisation 
of finite chains and approximate mappings onto quantum-field theories. Renewed inter- 
est in these chains is due to a provocative argument by Haldane [l] that the spin-1 
antiferromagnetic Heisenberg model has qualitatively different low-energy behaviour 
than the spin-$ model, which was solved by Bethe [2j and has gapless excitations. A 
number of papers have appeared [3,4] reporting numerical work on the gap for the spin- 
1 Heisenberg model. Despite some early dissent, most workers now agree that the gap 
isindeednon-zero. Experimentalevidence for agap has also been obtainedfromneutron 
scattering experiments [5]  on CsNiC1;. 

Haldane’s arguments [l] that the spin-1 chain has a gap appear to be contradicted by 
the existence of a bilinear-biquadratic antiferromagnetic Hamiltonian 

which is solvable [6] by the Bethe ansatz at j3 = 1 and does not have a gap there. A proper 
understanding of this issue requires consideration of general /3 in equation (1). A 
phase diagram for the model has been proposed [7, 81, using approximate field-theory 
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mappings, with a unique ground state and a gap for /3 < 1. The value /3 = 1 is a critical 
point where the gap vanishes. For /3 > I the ground state of the infinite chain is twofold 
degenerate due to a dimerisation or doubling of the unit cell, and there is also a gap in 
this region. 

The only rigorous support for this phase diagram comes from the exact solution of 
the /3 = -4 model, in terms of valence bonds [SI, where the ground state is unique and 
there is a gap. Several papers have also appeared reporting numerical work on the 
general bilinear-biquadratic Hamiltonian [ lo ,  111. The gap persists for some range of /3 
near zero, but first vanishes at a value of /3 somewhat less than I. Furthermore, they 
conclude that the gap remains zero for all larger values of /3. The focus has been on the 
gap to the lowest excited state, which is generally a triplet (S, = 1) rather than a singlet. 
The present work considers only singlet excited states. However, if the triplet gap 
vanishes, the singlet gap should also vanish, because two separated localised low-energy 
triplet excitations on the chain can be combined as a low-energy singlet excitation. 

Most finite chain diagonalisation has been performed using the standard basis of S, 
eigen-states. However, an alternative approach has also been used [12] for studying 
sectors with fixed total spin ST. For example, a basis of singlet states, S, = 0, is con- 
structed out of ‘valence bonds’, or contractions of two spin-1 variables to form a singlet. 
A complete set of singlets is obtained by all such pairwise contractions of spins. An 
arbitrary state of this type, for an s = 6 chain, can be represented by a set of lines 
connecting the pairs of contracted points, as in figure 1. This basis has lower dimension 
than the set of SzT = 0 states. Also, certain Hamiltonians have exact ground states which 
can be written simply in terms of valence bonds [9, 131. Furthermore, valence bonds 
provide an intuitive way of thinking about the ground state of an antiferromagnet which 
is quite different from the usual NCel state and in some cases more useful. This approach 
has been used by Anderson [I41 and others to discuss certain properties of the recently 
discovered high- T, superconductors. 

In this paper, we will develop the valence-bond basis into an efficient tool for 
performing exact numerical diagonalisations of spin-1 chains. We will then use this basis 
to study energy gaps in the bilinear-biquadratic Hamiltonian with /3 3 0 for chains of 
length up to 16. At the special point /3 = m, the purely biquadratic model, there is a 
special SU(3) symmetry [7]. The number of SU(3) invariant states at /3 = x is the same 
as the number of SU(2) invariant (i.e. spin singlet) states for an s = 1 Heisenberg chain; 
indeed the two models are simply related to each other in the singlet sector. Thus longer 
chzizs c2z be studied at /3 = x and exact gaps for chains of length up to 26 are discussed. 

n - 1  2 3 i, 

Figure 1. (a )  The dimerised state for an s = 1 chain. S = 1 sites are split into pairs of s = 1 
sites. Valence bonds singlet couple the s = B sites. ( b )  The valence-bond solid state for an 
s = 1 chain. 
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In the next section we will review some facts about the valence-bond basis for s = 4 
sites, develop the necessary techniques for extending it to s = 1 sites, and present our 
calculations. In § 3, we will show how our numerical datasupport the hypothesisedphase 
diagram for the bilinear-biquadratic model. In § 4 we will review the special SU(3) 
symmetry of the biquadratic model, and discuss its implications for numerical work. 
Section 5 is a brief conclusion. 

2. The valence-bond basis 

In numerical diagonalisation of finite chains, it is important to reduce the size of the 
Hilbert space, using symmetries, as much as possible. Thus it is standard to work in a 
subspace of definite total SzT: momentum and parity. However, most previous work has 
not projected out the subspace of definite total S : .  This is due to the difficulty of working 
with states of definite S t .  

In the spin4 case a convenient basis [15] was found long ago and is known as the 
valence-bond basis [12]. The most general way to form a singlet out of a collection of N 
spin-4 variables is to contract them pairwise to form singlets. (This is essentially the 
statement that there is only one invariant tensor for SU(2).) We represent such a singlet 
contraction as 

(2 )  &dl ) = 1-I 1) - II - _  .P 2 , 2  12, i? 
(U, /3 take on the values ti, and repeated indices are summed.) It is actually more 
convenient to raise the index on the even sites, defining 

I") = P P l p ) .  (3) 

(In fermion language this corresponds to making a particle-hole transformation.) A 
singlet contraction between an odd and an even site can the2 be written I n  "). 

We may represent an arbitrary singlet diagrammatically by drawing lines between 
the pairs of contracted spins. An important reduction occurs because we may leave out 
any diagram with crossed lines. This follows [12] from the 'uncrossing identity' 

(4) EaP,-Ys = &UY&P6 - &ab&P? 

The uncrossed diagrams can, in fact, be shown to be linearly independent 1161 by simply 
counting the number of states for a chain of length L .  The number N o  of ST = 0 states is 
the number of SzT = 0 states minus tne number of S,, = i stares. since aii spin muitipiets 
of higher ST have an SzT = 1 element, as well as an SrT = 0 element, whereas the ST = 0 
states do not. Thus [12] 
No = L! / (L /2 ) ! (L /2 ) !  - L ! / ( L / 2  + 1)!(L/2 - l)! = L! / (L /2 ) ! (L /2  + l)!. ( 5 )  

We now count the number of uncrossed valence-bond states. Each such state is 
equivalent to a random walk on the positive real axis which begins and ends at the origin. 
Successive points on the chain correspond to successive steps, with the step direction 
being the direction that the valence bond goes from that point, and the step length being 
one. The valence bond from the first point necessarily goes to the right and after n steps 
the total number of valence bonds which have gone to the right must be at least as 
big as the number that have gone to the left. Hence the random walk is restricted to the 
positive axis. The total number of random walks beginning and ending at the origin is 
L! / (L /2 ) ! (L /2 ) ! .  The number of random walks beginning and ending at the origin which 
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go negative somewhere equals the total number beginning at the origin and ending at 
-2. This follows from taking any random walk which goes negative and begins and ends 
at the origin and reflecting the section of the walk from the last (- 1) about the point 
(-1). This number is L!/(L/2 + 1)!(L/2 - l)!. The difference of these numbers, the 
total number of uncrossed valence-bond configurations, is the same as the number of 
singlets, proving the linear independence of this basis. 

By working in the subspace with ST = 0, instead of the subspace with SzT = 0, we 
reduce the number of states by a factor of 1/(L + 1). This means that the chain length 
caii be increased, for examp!e from 22 to 26 by working in the ST. = 0 subspace without 
significantly increasing the number of states. There are 705432 SzT = 0 states for a chain 
of 22 sites and 742 900 ST = 0 states for a chain of 26 sites. These numbers can be reduced 
by about another factor of 50 by projecting out states of definite momentum and parity. 

There is one rather unusual feature of the valence-bond basis: it is not orthonormal. 
The simplest way to proceed [12] is rtot to calculate matrix elements of the Hamiltonian 
H in this basis (ql iHlqj) ,  but rather to define a non-symmetric matrix h, by expressing 
the action of H on any state as a linear combination of the states 

The matrix h is unique due to the linear independence of the states. The eigenvalues and 
left eigenvectors of h give those of H .  The matrix h has the important advantage of being 
sparse. To see this, we consider [17] the bilinear Hamiltonian fors = i: 

Thus, a valence bond across sites i, i + 1 is an eigenstate of - with eigenvalue 2. 
More general cases can be worked out by using the fermionic representation of the spin 
operators 

s = lly+ffaff”p (8) 
or simply by checking each term. For a chain of four sites, let us consider the action of 
the term in H acting between the second and third site, on a state with valence bonds 
between the first two and last two sites: 

H231ff p p )  = - & I f f  p ”). (9) 

The two bonds terminating at the end-points of the iink are broken, a bond is formed 
on the link, and the two remaining dangling bonds are contracted. This actually expresses 
the action of H on an arbitrary link not containing a valence bond [17]. Note that we 
obtain a single valence-bond state, thereby preserving the sparseness of the usual basis. 
It then follows that the number of non-zero off-diagonal entries in any row of h is less 
than L. Of course, for configurations with many nearest-neighbour valence bonds in 
them the number of diagonal terms obtained is close to L/2. 

This valence-bond basis [ 121 has been used extensively for calculations involving 
s = 4 chains and Hubbard or other quantum cell models. In this paper we will generalise 
it to the case of s = 1. Again it allows a significant increase in the chain length possible 
for a given amount of computer time and storage. We note that a spin-1 variable can be 
obtained by symmetrising two spin-4’s. Thus we will put two spin-l variables on each 
site, consider arbitrary singlet states, and at the end, symmetrise with respect to the pair 
of spins on each site. This symmetrisation will set to zero any diagram with the two spins 



Spin-1 antiferromagnetic chains 157 

on a single site contracted. Examples of valence-bond diagrams connecting spin-1 sites 
are given in figure 1. 

The spin-1 bilinear-biquadratic Hamiltonian can be written in terms of the spin-4 
variables. Labelling two neighbouring s = 1 spins, SI ,  SI1 with SI S1 + S 2 ,  
sI1 = S3 + S4, the spin-1 Heisenberg interaction in equation (1) contains coupling 
between first, second and third spin-$ neighbours. Non-nearest-neighbour coupling 
produces linearly dependent crossed diagrams. Fortunately, these interactions can be 
rewritten [12] in terms of products of nearest-neighbour ones using 

s, a s ,  = 2(S, - S , ) ( S ,  . S , )  + 2 ( S ,  . S , > ( S ,  * S , )  

S ” b  + SbS“ = + d a b .  

s1 -s3 = i(012023 + e , ,~ , ,  - eI2 - e23) + i 

(10) 

(11) 

(12) 

which follows from the spin-$ anticommutator 

For i and j equal to 1 and 3: 

in terms of the 8 ,  operators defined in equation (7). Note that the first term @12623 
produces states with a valence bond between the first and second spin-4’s which are both 
on the same site. This corresponds to spin-0 on the site instead of spin-1 as required. In 
writing Hin  terms of these fictitious s = 4 spins, we may project out the s = 1 part of the 
final state for each site, or simply eliminate all diagrams with a valence bond between 
two s = $ spins on the same site, i.e. 12 or 34. We can also rewrite SI S4 in terms of 
nearest-neighbour interactions by using equation (10) twice. Dropping the terms which 
produce on-site valence bonds, we finally obtain 

s, .sl1 = -$e23612634 + e 2 4 ,  + e23e34 - 2e23 + 1. (13) 

In a similar manner, squaring this term, the biquadratic interaction leads after some 
algebra to nearest-neighbour products of 8,  operators il8]. 

The spin-1 problem is thus reduced to a spin-$problem with twice as many spins, and 
certain diagrams set to zero. It can be checked that the set of diagrams that we are 
keeping form a linearly independent basis. This follows from the linear independence 
of the s = 4 basis. The number of states with S,, = 0 for a spin-l chain of length L (even) 
is 

(14) 

for m sites with spin S, = 1 or -1, and the remaining L - 2m sites with S,  = 0. The 
number of states with ST = 0 can again be obtained by subtracting from this number the 
number of states with Si, = 1, giving [18] 

LI2 Ll2-1 

N~ = 2 L!/(m!)*(L - 2m)! - ]c L!/(m!)(m + I)!(E - 2m - I)!. (15) 
m=O m=O 

For a spin-1 chain of length 16 the number of S,, = 0 and ST = 0 states is respectively 
5196627 and 227475, a reduction by about a factor of 23. Working in the subspace of 
definite momentum and parity reduces this number to about 8000. 

We have calculated the excitation energy of the first excited state E,, (momentumx, 
parityeven), secondexcitedstate€,- (momentumn, parity odd) and.&- (momentumo, 
parity odd) for between 0 and x for chains of length ~p to L = 14, and €or a few values 
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t 1 11111111111 
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Figure 2. The scaled excitation energy of the lowest momentum x. parity-even state, LE,- 
versus p. Data for L = 16 are indicated by open circies. 

of /3, L = 16, where each eigenvalue takes about 10 h to compute on a V A X  li/780. The 
ground-state energy at /3 = 0 agrees with Nightingale and Blote's result [4]. Additional 
checks were obtained at  /3 = x by comparison with independent valence-bond (VB) 
calculations for modified spin-4 Heisenberg rings, as a consequence of the mapping 
described in § 4. The /3 = 0 and x tests give separate checks for the quadratic and 
biquadratic terms in equation (1). Convergence to lo-' was sought. The definition of 
the Hamiltonian in equation (1) involves an arbitrary /3-dependent multiplicative factor. 
Note that for a chain of two sites the gap between the ground state (of total spin 0) and 
the highest energy state (of total spin 2) is 3(1 + 0). Thus we choose to normalise our 
Hamiitonian, equation (i), by a factor of (1 t /3) in order to avoid /3-dependent structure 
in the energies. The scaled gaps LE,, , LE,- and LE,- are plotted against /3 for 0 < /3 < 1 
on the left side and against 1//3 for 1 < /3 < x on the right side of figures 2, 3 and 4 
respectively. Data were obtained at intervals of 0.05 in /3 and 1//3. 

123 I I I 

t t A 

60 
0 1 0 

B P-l 

Figure 3.  The scaled excitation energy of the lowest momentum 0, parity-odd state. LEo- 
versus p. Data for L = 16 are indicated by open circles. 
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120 

0 1 0 
P P-’ 

Figure 4. The scaled excitation energy of the lowest momentum x. parity-odd state, LE,- 
versus p. Data for L = 16 are indicated by open circles. 

3. Hypothesised phase diagram of the bilinear-biquadratic Hamiltonian 

The spin-1 Heisenberg (i.e. bilinear) Hamiltonian was predicted to have a gap by 
Haldane [l]. However: the Bethe ansatz [6] shows the bilinear-biquadratic Hamiltonian 
with /3 = 1 to have no gap. A phase diagram has been proposed [7, 81 for the general 
bilinear-biquadratic case which is consistent with these two results. In general. gapless 
spin chains are expected to have a low-energy sector which is equivalent to a massless 
quantum-field theory. The spin-wave velocity and T+ 0 susceptibility and specific heat, 
calcdated exactly from the Bethe ansatz [6], agree exactly with predictions [7 ,8 ,  19; of 
a particular massless quantum-field theory, known as the Wess-Zumino-Witten non- 
linear o model (wzw model) with topological coupling constant k = 2. Also, recent 
calculations of the finite-size energy gaps agree well with this theory [20]. There is a 
relevant operator which can be added to the wzw Hamiltonian. It is expected to produce 
a gap, and for one sign of the coupling constant but not the other lead to a breaking of 
the symmetry of translation by one site, dimerisation. Thus, moving away from /3 = 1 
should generate this operator and produce a gap. For /3 < 1, the ground state is unique, 
but for /3 > i it is twofold degenerate owing to the spontaneous breaking of the trans- 
lational symmetry by dimerisation. 

Thevalence-bond basisprovidessimplevariationalgroundstates for the two different 
phases. The broken symmetry phase can be represented by the dimerised state with two 
valence bonds connecting pairs of neighbouring sites, as in figure l(a). There are two 
such states related by translation by one site. The phase of unbroken symmetry can be 
represented by the valence-bond solid state with a single valence bond connecting each 
pair of neighbouring sites as in figure l(b). This in fact turns out to be the exact ground 
state for /3 = -4, where there is indeed a gap [9]. These two states are variational ground 
states [9] for arbitrary /3; the valence-bond solid state has lower energy for < 4 and the 
dimerised state has lower energy for /3 > t .  The true ground state for arbitrary /3 is 
considerably more complicated than these simple states. but is expected to share the 
symmetry properties of the valence-bond solid state for /3< 1 and of the dimerised state 
for /3 > 1. The value /3 = 1 is a critical point separating the two phases where the gap 
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vanishes. This is somewhat analogous to the critical temperature in the Ising model 
where the correlation length diverges. 

In testing these hypotheses on finite chains, a subtlety emerges, connected with the 
broken symmetry in the dimerised phase. If we consider some value of p > 1 where 
there are two ground states for an infinite chain, then we may think of the two simple 
dimerised states as being rather like the two minima of asymmetric double-well potential. 
These configurations are not the exact ground states. Instead, there are some quantum 
fluctuations away from these states, just as occurs for the quantum-mechanical double- 
well problem. In fact, if the barrier between the two wells is finite, quantum tunnelling 
will a!ways mix the two states localised near the bottom of each well. The true ground 
state is essentially a symmetric linear combination of the two localised states, while the 
antisymmetric combination has a very low excitation energy. The splitting is entirely 
due to the quantum tunnelling and is O[exp(-S/h)], where S is the classical action. In 
the spin chain problem there is also tunnelling between the two dimerised configurations, 
but this is suppressed as the chain gets longer. It takes L applications of H to turn one 
dimerised state into the other. Thus the matrix element between these two states is O ( E ~ )  
or O(e-"L>, where E is some number less than 1 and a is a positive constant. Just as for 
the double well with a large barrier, the complete low-energy spectrum consists of closely 
spaced pairs of states with large gaps separating each pair. So the spectrum of a large 
chain should consist of pairs of states with a gap of O( 1) between each pair, but a splitting 
of O(e-") separating the two members of each pair. In the infinite chain limit. the 
splitting vanishes, and the Hilbert space separates into two sectors, corresponding to the 
two different dimerised ground states. 

Thus numerical investigations of the conjecture must carefully distinguish the gap to 
the partner of the ground state, of O(e-"L>, and the gaps to the higher pairs of states, of 
O( 1). A small gap to the partner of the ground state is an indication of dimerisation, not 
of a vanishing gap in the infinite system. The ground state and its partner should have 
the symmetry of the (respectively) symmetric and mtisymmetric linear combinations of 
the two simple dimerised states. Owing to our sign convention in definingvalence bonds, 
translating one of the simple dimerised states by one site gives the other simple dimerised 
state times a factor (-1)L'2. Thus the ground state. the sum of the two dimerised states, 
transforms into ( -1)Li2 times itself under translation by one site; it has momentum 
(L/2)x. The partner of the ground state, the difference of the two simple valence-bond 
states, transforms into -( - 1)L/2 and so has momentum (L/2 + l)x, or x relative to the 
ground state. Parity. or reflection about the midpoint between two sites, maps either 
dimerised state into itseif, times the same factor (- Tius both linear combinations 
have the same parity, (-1)L'2. All momenta and parity in figures 2 ,3  and 4 are relative 
to that of the ground state. We interpret the lowest energy excitation, E,, in figure 2, 
as the antisymmetric combination of ground states, for /3 > 1. 

One way of testing numerically for dimerisation is to study a chain of odd length. 
The simple dimerised state now has one unpaired spin, and hence total spin ST = 1. Thus 
a ST = 1 ground state for a chain of odd length is an indication of dimerisation. It is 
interesting to note that previous numerical work [lo] found a crossover from ST = 0 to 
ST = 1 with increasing ,9. While this indicates dimerisation. it does not shed light directly 
on the gap issue. However, experience with other situations, as for examples = +chains, 
suggests that dimerisation is normally accompailied by a gap, so that evidence for 
dimerisation may be considered indirect evidence for a gap. 

Here we study even chains. In $ 2  we presented numerical results for the scaled gaps 
LE,,, LEo- and LE,-. Perhaps the most dramatic feature is the crossing of the smallest 
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Figure 5. A blow-up of figure 2, showing the crossings of the curves for different values of L. 

scaled gap, LE,,, for different values of /I as shown in figure 5 by expanding the 
0.5 < p < 0.8 region of figure 2. According to field-theory arguments the scaled gap 
diverges as L in the region with a gap, but becomes exponentially small in the dimerised 
phase. It follows that LE,, must cross at least once with increasingp and at large L must 
approach a constant near /3 = I ,  separating the two phases. For sufficiently small p the 
scaled gap increases with L ,  but for larger ,B it decreases, thus producing crossing points 
in figure 5 for L ,  L + 2pairs that should converge top  = I as L -+ m. Since this asymptotic 
scaling behaviour should set in once L is longer than the (0-dependent) correlation 
length, crossings should occur even for only moderately large L. The crossing points of 
the L and L + 2 curves are plotted versus i/(L t i) in figure 6. The crossing points are 

1 6505 

0 59’5 

0 5.99 o.6t , , , , , , , o  

0 0 04 0 08 0 12 

I N-1 I - ’  
Figure 6 .  The crossing points of the L and L + 2 curves of LE,- versus b, plotted against 
1/(L + 1). Linear and quadratic extrapolations are indicated by the full and broken curves, 
respectively. 
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Figure 7. E,, versus 1/L for /3 = 0.1 and x .  

seen to increase monotonically with a decreasing curvature. Assuming that this trend 
continues with positive curvature, a lower bound on Pc is found from a straight-line 
extrapolation of any two points. An upper bound is given by fitting a parabola to 
three successive points. The N < 16 data in figure 6 lead to Pc = 1.01 5 0.03. Similar 
extrapolations [lo,  111 for the triplet gap suggested a smaller critical value of /3 around 
0.6. We note that for the singlet gap the critical value of /3 is clearly much higher. the 
crossing already occurring at 0.73 for the L = 14, L = 16 curves. This technique for 
estimating Bc is better motivated for the singlet. momentum x-scaled gap where the 
theory predicts that crossing musr occur at Pc. 

The scaled gaps LE,,(L) of figure 2 have no crossings for /3 > 1 and decrease with 
increasing L in this region. The gap E,, is plotted against 1/L in figure 7 for /3 = 0 , l  and 
x .  A t  /3 = x data up to L = 26 are included using the mapping discussed in § 4, while at 
other values the maximum is L = 16. Once again, a finite gap is suggested at /3 = 0 along 
with vanishing gaps at /3 = 1 and =. The /3 = 0 singlet gap extrapolates to roughly 1.0, 
while the 0 = 0 triplet gap [4] is about 0.40 (in units of the spin coupling J). The 
vanishing E,, for /3 > i is interpreted as dimerisation. 

We now turn to the higher excitation energies Eo- and E,T-. We expect these to be 
finite at L -+ x for all /3 except /3 = 1. As shown in figure 3 Eo- is a slowly decreasing 
function of L. There is no particular structure near /3 = 1 and no crossing of the scaled 
gaps. The scaled excitation energy LE,- in figure 4 has similar behaviour except that 
successive lengths L = 4n - 2, 4n cross at large /3. The families of curves with L = 4n 
and L = 4n - 2 seem quite different at large /3. Possibly this is some indication of 
dimerisation at large /3 but we do  not have even a qualitative explanation of it. Plots of 
Eo- (figure 8) and E,- versus 1/L at /3 = 0 , l  and x for L up to 16 lead to no definitive 
conclusion concerning the gap for L = 2. In particular, E,,-(O) extrapolates nicely to 
roughly3.0,ortoabout 3E,,(O). The L s 16valuesof &(l) andE,-(x) exceedE,-(0), 
but their slope in figure 8 is greater and less linear. The field-theory prediction. that 
E,,-(l) -+ 0 as L + x while Eo-(=) remains finite, cannot be tested without going to 
considerably larger L. 
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Figure 8. .Eo- versus 1/L for p = 0, 1 and =. Linear extrapolation is indicated for /3 = 0. 

All scaled excitation energies LE, except LE,, should be linear in L for /3 > 1 and 
/3 < 1, being constant only at /? = 1. There is no general reason why these curves should 
necessarily cross. although they could. Field-theory arguments at /? = 1, checked in 
some cases against Bethe ansalz results, suggest that various scaled excitation energies 
converge as 

LE,(L)-+ constant + c,/ln L (16) 
where the c, are constants [20]. If the c, are negative then no crossings need occur. as 
illustrated in figure 9(a ) ,  while positive c, lead to at least two crossings as shown in figure 
9(b). In fact, for singlet states the c, are positive. However, the above asymptotic scaling 
at /? = 1 has corrections which are only suppressed by additional powers of 1nL. so LE, 
may not become a decreasing function at /3 = 1, and hence crossings may not occur, until 
L isvery (i.e. exponentially) large. On the other hand, for the lowest triplet state, studied 
in [20]. c, is negative so LE, is increasing at large L and no crossings need occur. Explicit 
Bethe ansatz calculations show [20] that the triplet excitation energy, LE, does increase 
at large L (>20). However for the smaller values of L (G12) used in [lo. 111, LE, is 
actually decreasing and crossings occur. As L increases, it is likely that the crossings will 
eventually disappear, rather than converging to /? = 1. 

4. SU(3) symmetry of the pure biquadratic model 

The pure biquadratic spin-1 model (formally, /3+ x )  has an SU(3) symmetry [7]. To 
see this it is convenient to adopt a basis of states on each site which is different from the 
standard S, eigen-states or the double spin-l states I m p ) .  The three states are labelled by 
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Figure 9. (a )  Qualitative sketch of scaled excitation energies versus p for ci negative. ( b )  
Qualitative sketch of scaled excitation energies versus p for c, positive. 

an index a which runs from i to 3, and are transformed by the spin-1 operators as 

Sujb) = iEaDcjc) (37) 
where sabc is the antisymmetric three-index tensor, with = 1. Repeated indices are 
summed from 1 to 3. Note that la) is the zero eigenstate of S‘. This basis corresponds to 
the zero-field states of triplets [21]. No significance is attached to raised or lowered 
indices for SO(3) representatations. The action of the Heisenberg Hamiltonian on this 
basis is given by 

Si * Siillab) = Iba) - Gublcc). 

[(Si * si+1)2 - 1lIub) = G”b/CC). 

la) + Rub I b) 

(18) 

(19) 

(20) 

By applying this tranformation twice we see that the action of the biquadratic term is 

For arbitrary /3 the bilinear-biquadratic Hamiltonian is invariant under SO(3) rotations: 

where Rub is an SO(3) rotation matrix, Rab is real, R-’ = RT and det R = 1. However, 
the pure biquadratic Hamiltonian is invariant under a larger symmetry group of SU(3) 
transformations. These are defined by an SU(3) matrix vub which is a complex matrix 
obeying U-’ = U’, det U = 1. U acts differently on even and odd sites. Consequently, 
we change our notation slightly, lowering the index I,) on odd sites and raising it l a )  on 
even sites. Also, the complex conjugate matrix is written with the opposite index 
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elevation: U*'b. Under SU(3) transformations the two types of sites transform as 

In)+ l a ) +  U*" b i b ) .  (21 1 
This means that the odd and even sites transform under the fundamental and anti- 
fundamental representations of SU(3) respectively. The Heisenberg Hamiltonian 
(p  = 0) is not SU(3)-invariant because the first term in equation (18)  is a permutation 
which switches the two inequivalent types of sites. However the pure biquadratic Ham- 
iltonian is SU(31-invariant since 

U ,  bU*c d 6 b  = b ( u + ) b  = 6, '. (22) 

The biquadratics = 1 model is closely related to the s = 4 Heisenberg model, so that 
the SU(3) singlet basis can also be represented by valence bonds. An SU(3) valence 
bond is equivalent to a double valence bond of the split fermion notation (figure l ( a ) ) .  
For a chain of two sites, the only SU(3) invariant is I,"). In general for a chain of L sites 
( L  even) the most general singlet is obtained by contracting the index on each odd site 
with the index on some even site. We can again represent this state by a diagram with 
lines connecting the contracted sites just as we did for the s = 4 Heisenberg model. The 
condition that only even-odd contractions occur is in fact equivalent to the no-crossing 
condition, since any line connecting two even or two odd sites would pass over an odd 
number of other sites and therefore would cross at least one other line. Thus there is the 
same number of SU(3) singlet states for the biquadratic s = 1 model as for the s = 
Heisenberg model. 

We find it convenient to normalise the biquadratic Hamiltonian 

Hb = -ax [(Si * Si+$ -11. (23) 

The general effect of H on an arbitrary valence-bond state is summarised by 

where n = 3, and in the second equation Hbi,i+l acts on spin-1 sites not connected by 
valence bonds. The s = 4 Heisenberg Hamiltonian of equation (9) acts in the same way 
on valence-bond states, except that now n = 2. Comparing the two cases we see that 
there is a smaller tendency for nearest-neighbour valence bonds to rearrange themselves 
for n = 3. 

In general, an SU(n)-invariant Hamiltonian can be defined [22], acting on states 1") 
and I,), with a running from 1 to n,  by 

HI, b ,  = - ( l /n>6,  b l c  '>. (25 1 
The action of H on valence-bond states is given by equation (24) with n an arbitrary 
integer. In fact, we may generalise H on the SU(n) singlet sector by letting n be an 
arbitrary positive real number. We see that for large n the dimerised state becomes 
essentially the exact ground state, because the valence-bond-breaking effects become 
O(l /n) .  The n = 3 case (the biquadratics = 1 model) has a greater tendency to dimerise 
than the n = 2 case (s  = 4 bilinear model). Whether or not it actually does dimerise is a 
question which we investigate numerically. The scaled LE,+ gap is shown in figure 10 
for E s 26 as a function of l / n .  

For ordinary spin chains the ground state is expected to be an SU(2) singlet. This has 
been proven rigorously in certain cases. Thus it is natural to expect that, when the 
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Figure 10. Scaled excitation energies LE,- versus l / n  for the general SU(n) model. Circles 
indicate points of maximum curvature. Inset shows 1/L versus l/n,for the point of maximum 
curvature. 

symmetry is SU(3), the ground state will be an SU(3) singlet. However; we do not have 
a rigorous proof of this. Our numerical diagonalisation of biquadratic chains of length 
up to 16 in the subspace of SU(2) singlets shows that the ground state is indeed an SU(3) 
singlet, i.e. it is constructed entirely from double valence bonds, as in figure l ( a ) .  We 
will assume that it is the case for chains of arbitrary length. We report calculations here 
for biquadratic chains of length up to 26. We also calculate gaps to excited SU(3) singlet 
states. Using our full solution in the SU(2) singlet subspace for L s 16, we find that the 
Iowest excited state, of momentum m, parity even relative to the ground state, is an 
STJ(3) singlet. As shown in figure 7 ,  E,,(=) vanishes as L-. =. 

In figure 10 we plot the scaled gap LE,- versus 1/n for the general SU(n) models, 
for L up to 26. Numerical results were obtained at intervals of 0.05. except near the 
points of maximum curvature, indicated by open circles, where the interval is refined to 
0.005. This quantity clearly goes to zero rapidly with L for sufficiently large n,  and in 
figure 10 is already indistinguishable from zero by n = 6. For N = 2 it appears to be 
converging to a finite constant, consistent with the 1/L behavior of the gap in the s = 1 
case. This suggests a trznsition from a dimerised to undimerised, gapless phase with 
decreasing n. At L = x., LE,, should have a discontinuous derivative at n,. The inset in 
figure 10 shows the point l/n,of maximum curvature 2s a function of 1 /L ,  and it appears 
to be heading towards n, = 3 at L = =. At this point the curvature is infinite, with a gap 
opening for n > n,. This is the final evidence for dimerisation of the p + =, spin-1 chain. 

To study the true gap, as explained above we must look at higher excited states. The 
next two SU(2) singlet excited states are not SU(3) singlets. Nonetheless, we also 
calculate the excitation energy of the second excited SU(3) singlet state. Extending the 
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argument given earlier, if there are localised gapless excitations transforming under any 
representation of SU(3) we expect to be able to form an SU(3) singlet excitation by 
superimposing two distant excitations. Thus the measurement of an SU(3) singlet gap 
indicates a gap in general. SU(3) gaps were not linear against 1/L, but curved downward 
like the p = to results in figure 8 and made extrapolations inconclusive. 

5. Conclusions 

The fact that the LE,, crossing points in figure 6 extrapolate to approximately 15 = 1 
supports a transition to a gapless state, which is accompanied by dimerisation. The 
transition is also supported by the plot of LE,- versus 1/L in figure 7, in which there 
appears to be a gap for /3 = 0 but not for /3 = 1 or x at L = 35,  and by the LE,- versus 
1/n plots in figure 10. The excited-state data are more ambiguous, and though a gap is 
suggested by figures 3 and 4. plots of E versus 1/L are inconclusive. 
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